CHP project of Kuittila Power – Case Study

The CHP project of Kuittila Power was initiated by the entrepreneur/farmer interested to decrease the energy costs and produce own energy for the farm and co-located company. One of his staff and a development company introduced the solution. The reference site and a manufacturer were visited, after which a feasibility study was carried out.

As there was positive result, the investment project was initiated and 35% co-financing negotiated from the local authority. The manufacturer provided the technical planning, and investor took care of micro DH network construction and required connections (with the electricity company). A local constructor made the building construction.

The investment initiated in April, was ready in October 2012. The first winter included only test-runs, as there was no available high quality wood fuel. In spring, own fuel supply (with dryer solutions from the reference site) was established and plant started operating.

The first year included technical operations to improve the performance; technical support was received through the manufacturer. The plant is operating now a 3 year at a roll, and received significant status of small-scale CHP demonstration in the region, nationally and internationally.

For more details see:

http://grebeproject.eu/wp-content/uploads/2017/09/Small-Scale-Biomass-CHP-Kuittila-Power-Finland.pdf

 

 

Advertisements

Government approves scheme to diversify green energy

DNaughten

A new scheme designed to diversify the State’s renewable energy production and boost its chances of meeting key EU targets has been approved by the Government. The Renewable Electricity Support Scheme (RESS) is designed to help the State meet its renewable pledges up to 2030. Its first priority is to boost renewable energy production quickly to help turn 16 per cent of the State’s energy needs “green” by 2020. The scheme will incentivise the introduction of sufficient renewable electricity generation by promoting investment by community groups in green projects. Offshore wind and tidal projects will be central if the State is to meet its targets, while it is expected to also support an immediate scale-up of solar projects. Projects looking for support under the scheme will need to meet pre-qualification criteria, including offering the community an opportunity to invest in and take ownership of a portion of renewable projects in their local area.

Auction system

The RESS scheme introduces a new auction system where types of energy will bid for State support. It is proposed that the scheme be funded through the Public Service Obligation Levy, which is a charge on consumers to support the generation of electricity from renewable sources. Individual projects will not be capped, but the Government will limit the amount that a single technology, such as wind or tidal, can win in a single auction. The auctions will be held at frequent intervals throughout the lifetime of the scheme to allow the State to take advantage of falling technology costs. The first auction in 2019 will prioritise “shovel-ready projects”. “By not auctioning all the required capacity at once, we will not be locking in higher costs for consumers for the entirety of the scheme,” Minister for the Environment Denis Naughten said. In effect it should make it easier for solar and offshore wind to get investment, yielding multiple billions for green projects over the next 15 years.

2020 vision

It is hoped renewable energy will represent 40 per cent of the State’s gross electricity consumption by 2020, and 55 per cent by 2030, subject to determining the cost-effective level that will be set out in the draft National Energy and Climate Plan, which must be approved by the EU and in place by the end of 2019. In addition the scheme is intended to deliver broader energy policy objectives, including enhancing security of supply. “This scheme will mark a shift from guaranteed fixed prices for renewable generators to a more market-oriented mechanism [auctions] where the cost of support will be determined by competitive bidding between renewable generators,” said Mr Naughten. The next step for the Government is to secure EU approval for the package, which typically takes six to nine months. It is estimated that the first auction will be in the second half of next year.

https://www.irishtimes.com/news/environment/government-approves-scheme-to-diversify-green-energy-1.3575492

Advice Notes on Wind Technology Economics for the NPA Region

Biomass

The Advice Notes aim to provide introductory material for entrepreneurs, startups and SME’s, considering to enter into the renewable energy sphere and based in the NPA regions partners to GREBE. The scope of the Advice Note covers regional, trade and industry, renewable energy (RE), technology information from Ireland, Northern Ireland, Scotland, Iceland and Finland. Different partner regions have different level of deployment of the various RE technologies covered by the Advice Notes. Thus, the level of information will vary depending on the level of deployment for each technology. For example, wind is not deployed on a large scale in North Karelia (Finland); however, it is widely deployed in Scotland, Ireland and Northern Ireland.

Full details are available on the GREBE website:

http://grebeproject.eu/wp-content/uploads/2018/07/GREBE-Advice-Notes-Biomass.pdf

The focus of the Advice Notes is on regional information of some of the main economic characteristics sited as imperative, when making an informed choice, regarding which RE technology may be the optimal choice for a new business venture:

  • Costs and economics associated with the relevant technology
  • Support schemes available, relevant to the technology
  • Government allowance/exemptions, relevant to the technology
  • Funding available for capital costs of the relevant technology
  • List of the relevant to the technology suppliers/developers, with focus on local/regional, suppliers/developers and the products and services they offer.

The economics of a biomass system are governed by the capital cost, the biomass fuel cost, the offset fuel costs and the incentives available. The capital cost of a biomass boiler is dependent upon the size, fuel type used and level of automation of the system.

Biomass is the world’s fourth largest energy source, contributing to nearly 14% of the world’s primary energy demand. The most common fuel is wood, which can be supplied in three forms; logs, chips and compressed wood pellets. However, biomass energy also includes energy crops, food waste streams, agricultural residues, industrial wastes and residues which can be used for heating in certain, specific circumstances. A range of biomass boilers are available, in sizes to suit homes, small businesses, community buildings through to large hospitals and industrial processes. A reliable feedstock supply chain is vital for the economic viability of a biomass boiler system.

Fuel costs are central when considering the levelled cost of electricity, since ongoing running costs far outweigh capital investment. Thus, it is imperative before considering investment in a biomass boiler system to ensure that the right fuel can be sourced locally. Economic benefits of biomass include relatively inexpensive resources; locally distributed energy sources provide constancy and reliability, price stability and generation of employment opportunities in rural communities. Risks included price volatility and availability of feedstock.

Farmers warned felling licences taking a year to process – IFA

2014-10-21_bus_3962775_I1 (1)

Forestry felling licenses are taking up to a year to process farmers are being warned by the IFA. National Farm Forestry Chairman, Pat Collins said that the latest IFA Timber Price report shows that palletwood prices have increased by up to 15pc since February, while average sawlog prices are in excess of €85/tonne. Pat Collins said, “With demand for timber predicted to remain high at a domestic and global level, it is a good time to consider forestry. There are several options available under the Afforestation and Woodland Creation scheme to suit the soil, size, location and management objectives”.

He said that the size of a viable forest from a timber perspective is very location specific, for example a small forest that is near a road and easy to work can generate comparable timber incomes per hectare as a larger forests, particularly if managed as part of a harvesting cluster. “For those who have already planted, but who have not managed the forest or have timber in hard-to-access locations – now is the time to have your asset valued and look at realising a good price”. A farmer is legally required to apply to the Forest Service for a felling license before they can fell a tree in his plantation. If you are planning to apply for a felling licence, approvals can take up to 12 months to issue.

“Farmers are very concerned with the delays in getting felling licence approval”, said Mr. Collins. “The introduction of a single 10 year felling licence and the new public consultation process, although welcomed, is causing further delays”. He said that the Department must work to reduce the turnaround time for felling licence approvals so farmers can avail of the strong timber prices.

https://www.independent.ie/business/farming/forestry-enviro/forestry/farmers-warned-felling-licences-taking-a-year-to-process-ifa-36945543.html

Advice Notes on Biomass CHP Technology Economics for the NPA Region

Biomass CHP

The Advice Notes aim to provide introductory material for entrepreneurs, startups and SME’s, considering to enter into the renewable energy sphere and based in the NPA regions partners to GREBE. The scope of the Advice Note covers regional, trade and industry, renewable energy (RE), technology information from Ireland, Northern Ireland, Scotland, Iceland and Finland. Different partner regions have different level of deployment of the various RE technologies covered by the Advice Notes. Thus, the level of information will vary depending on the level of deployment for each technology. For example, wind is not deployed on a large scale in North Karelia (Finland); however, it is widely deployed in Scotland, Ireland and Northern Ireland.

Full details are available on the GREBE website:

http://grebeproject.eu/wp-content/uploads/2018/04/GREBE-Advice-Notes-biomass-chp-2.pdf

The focus of the Advice Notes is on regional information of some of the main economic characteristics sited as imperative, when making an informed choice, regarding which RE technology may be the optimal choice for a new business venture:

  • Costs and economics associated with the relevant technology
  • Support schemes available, relevant to the technology
  • Government allowance/exemptions, relevant to the technology
  • Funding available for capital costs of the relevant technology
  • List of the relevant to the technology suppliers/developers, with focus on local/regional, suppliers/developers and the products and services they offer.

Combined heat and power (CHP) is a method that delivers both heat and power on site in a single, highly efficient process, normally over 80% efficiency. CHP creates electricity and as a by-product of the generation process it produces heat. Wood biomass is fed into the CHP system similar to a normal biomass boiler and the produced gas is then fed to an engine which is connected to a generator generating electricity while the heat produced, can be fed into a heating system. Biomass is the world’s fourth largest energy source, contributing to nearly 14% of the world’s primary energy demand.

Small scale (<100kW) and micro-scale (<15kW) biomass CHP are particularly suitable for applications in commercial buildings, such as hospitals, schools, industrial premises, office building blocks, and domestic buildings. Optimum system design and implementation is crucial for cost-effective operation and it is established that the best economic performance come about with high load factors when the maximum amount of both electricity and heat sold on-site is maximised.

 

Online Presentation on the Community Farming Model and the REDIRECT project, Thursday 21st June from 11am – 12pm

Online Discussion

The ReDirect Ireland project would like to invite you to an online meeting on Thursday 21st June from 11am – 12pm. This is an opportunity to hear the details of a ReDirect Partner approach. In Wales a community trust called ‘Cwm Harry’ are taking existing residual biomass, putting it through the ‘IFBB’ process, followed by a pyrolysis, with the intent of producing biochar or activated carbon products and by-products for sale in the economy. They are in the process of getting the site operational. 

An online discussion around the community farm model experience in FFarm Moelyci (Wales) and the RE-DIRECT project aims to utilise waste or low value biomass for the production of energy and value added carbon products such as biochar and activated carbon.

Click here to register.

Contact:

Mr. Stephen McCormack, stephenmccormack@wdc.ie with any queries.

Power from Biomass project final seminar, Monday 11th June, Joensuu

KUAS

The Rural development programme co-financed Power from Biomass project completed its work in June 2018 after three years of renewable energy development in North Karelia, Finland. The project cooperating closely with GREBE in North Karelia, resulted in several new investments including two solar PV and energy storage systems in community buildings of Höljäkkä and Haikola in Nurmes. Project also established a regional network of 15 renewable energy demonstration sites.

The final seminar held in Joensuu, presented projects main outputs, latest developments in renewable electricity production, biomass-based small-scale combined heat and power, solar energy project of heat enterprises, and intelligent solar PV systems.

Project manager Antti Niemi from Pielinen Karelia Development Company PIKES Ltd. summarized the project results. The project established a regional demonstration network with 15 sites demonstrating renewable energy production systems. The Energiaraitti website presents the technical and economic information and live-information of solar PV systems. New production units established were mostly solar PV and some energy storages systems in farms, other rural enterprises and community buildings. The biomass-based renewable energy had a challenging business environment due to low price of fossil fuel oil. Despite, also some new biomass-based energy systems were established.

Project manager Kim Blomqvist from Karelia UAS presented the solar PV systems integrated into biomass-based district heating plants. Investments were made for 7 district heating plants with total annual production of 52 MWh. The heating plans were considered suitable for the solar PV as they have balanced electricity demand.

Marketing and product development manager Kimmo Tolvanen, representing regional energy company PKS, presented an in-depth overview of the energy system development in Finland and North Karelia. The main game changers in the energy system are expected to consist of wind and solar power production, energy storages and digitalization working all effectively together. The energy grid changes toward decentralised, intelligent and adaptive systems are evident. In addition, electricity markets are in transition, and new service developments are expected throughout the system from production to consumption.

Project coordinator Anssi Kokkonen from Karelia UAS presented the technical solutions of biomass-based combined heat and power production. The solutions included woodchip gasification plant (Volter Ltd.), Nano-chp Stirling engine (9 kWth + 0.6 kWe), fuelled by wood pellets (Ökofen).  Both solutions are demonstrated at Sirkkala Energy Park by Karelia UAS.

Project manager Toni Hannula from energy company ESE (Etelä-Savon Energia, Mikkeli) presented intelligent solar power systems. The smart energy transition project by Lappeenranta Technological University has generated an overview of the systems change. The ESE has been successful in establishing biogas fuel stations, and piloting intelligent solar PV systems with 48 hours production forecast and directing the production optimally depending on energy price (electricity spot-price optimizing) and production and consumption loads. The system is piloted in Lumme Energia Oy estates.

The Power from Biomass project developed as a diverse renewable energy project and delivered several new services and RE production sites were established. The project had an international element through cooperation and networks of the GREBE project.