The Influence of Environmental Conditions in NPA and Arctic Regions

4.3 pic

The key requirement of this work package is the development of a database (and supporting summary report), compiling information for potential renewable energy business and technology solutions to help overcome environmental and climatic challenges in the NPA programme region. Technology solutions cover installation, operation and maintenance of equipment, not the design and manufacture of components.

The objective of the database is to identify the main environmental and climatic challenges, and outline technological and business solutions to these challenges, creating a database of these for 8 different categories of renewable energy technology. It is designed for use by new and existing renewable energy businesses, to inform them of the challenges they may face in developing their business and how these will be overcome.

A range of examples (where available) have been highlighted on how the challenges identified have been overcome. Specific regional related innovations and smart solutions from local business on technology driven RE-solutions have been documented, with the intention of passing on this knowledge to other regions in the NPA not involved in the GREBE Project.

The 8 renewable energy technology categories identified by the GREBE Project partnership are:

  1. Biomass
  2. Wind (Onshore only)
  3. Solar PV
  4. Solar Thermal
  5. Hydro
  6. Ground source heat pump
  7. Air source heat pump
  8. Anaerobic Digestion (farm scale/agricultural)

The database is located on the Renewable Business Platform and can be downloaded here.


Resource Assessment Toolkit for Solar Energy

SolarThe Toolkit outlines best practice techniques for assessing solar resource potentials as a foundation for a solar resource assessment. Solar resource assessment is indispensable in estimating the solar potential in a given location, the social and environmental impacts accompanying the resources exploitation and the economic viability of solar utilization scenarios.

The scope of the Toolkit covers:

  • Governing principles of solar energy
  • Measuring Solar Irradiation
  • Parameters for choice of optimal measurement station
  • Data acquisition and quality control
  • Solar radiation modelling – satellite-based models
  • Applying solar resource data to solar energy projects
  • Forecasting Solar Irradiation
  • Best practices in on-site monitoring programmes


Solar energy is obtainable in abundance in most parts of the world, even in the NPA remit. As seen in the solar irradiation map above, the NPA Region’s average sum of solar irradiation is well below most parts of Europe. However, during the summer period, the countries based in the NPA region get around 17 to 19 hours of daylight and those in the Arctic Circle get 24 hours. Solar PV requires daylight (solar irradiation), rather than sunshine and high temperatures, which makes it a viable technology choice for businesses in the NPA region.

Details of the Resource Assessment Toolkit for Biomass Energy may be downloaded here:

Advice Notes on Solar PV Technology Economics for the NPA Region

Solar PV

The Advice Notes aim to provide introductory material for entrepreneurs, startups and SME’s, considering to enter into the renewable energy sphere and based in the NPA regions partners to GREBE. The scope of the Advice Note covers regional, trade and industry, renewable energy (RE), technology information from Ireland, Northern Ireland, Scotland, Iceland and Finland. Different partner regions have different level of deployment of the various RE technologies covered by the Advice Notes. Thus, the level of information will vary depending on the level of deployment for each technology. For example, wind is not deployed on a large scale in North Karelia (Finland); however, it is widely deployed in Scotland, Ireland and Northern Ireland.

Full details are available on the GREBE website:

The focus of the Advice Notes is on regional information of some of the main economic characteristics sited as imperative, when making an informed choice, regarding which RE technology may be the optimal choice for a new business venture:

  • Costs and economics associated with the relevant technology
  • Support schemes available, relevant to the technology
  • Government allowance/exemptions, relevant to the technology
  • Funding available for capital costs of the relevant technology
  • List of the relevant to the technology suppliers/developers, with focus on local/regional, suppliers/developers and the products and services they offer.

As seen in the in the solar irradiation map below, the NPA Region’s average sum of solar irradiation is well below most parts of Europe. However, during the summer period, the countries based in the NPA region get around 17 to 19 hours of daylight and those in the Arctic Circle get 24 hours. Solar PV requires daylight (solar irradiation), rather than sunshine and high temperatures, which makes it a viable technology choice for businesses in the NPA region.Map

Financial incentive schemes and massive global deployment and development of solar PV panels has facilitated to address the relatively high capital costs of photovoltaics, by reducing the typical payback period and making it more financially viable investment. Solar PV technology uses solar cells, which are grouped together in panels, to produce electricity when exposed to sunlight. Solar PV is a highly modular technology that can be incorporated into buildings (roofs and facades) and infrastructure objects such as noise barriers, railways, and roads.

This makes PV an apt technology choice for use in urban and industrial areas. At the same time solar PV is appropriate for rural areas as well. This is particularly because solar PV delivers an economical and clean solution for the electrification of remote rural areas where the power from the grid is not available or very expensive. In most cases Solar PV systems may need to be accompanied by energy storage equipment or auxiliary power units, to supply electricity when the sun is not available.

Solar cells and modules come in many different forms that vary greatly in performance and degree of development. Solar PV is characterised by its versatility. Panels can be effectively employed at a very wide range of scales and in different locations and applications range from consumer products (mW) to small-scale systems for rural use (tens or hundreds of watts), to building integrated systems (kW) and large-scale power plants (mW/gW).2

The technology costs have dropped tremendously due to economies of scale in production and technological advances in manufacturing. A price decrease of 50% had been achieved in Europe from 2006 to 2011 and there is a potential to lower the generation cost by 50% by 2020. Furthermore, solar PV takes less time to plan and install, compared to other RE technologies.

GREBE publishes its 9th Project E-zine

GREBE Ezine Sept 2018

The GREBE Project has published its 9th e-zine to showcase the activities and ongoing goals of the project.  

Welcome to the 9th e-zine for the GREBE Project. Since April we have continued to carry out the project activities and meet our objectives. Our 9th partner meeting in Thurso was hosted by the Environmental Research Institute (ERI) and included a site visit to the world famous Old Pultney distillery and Wick District Heating Scheme. It also included our final conference ‘Local opportunities through Nordic cooperation’ on Thursday 24th May 2018. Details may be found on page 2.

Page 3 Header

The Renewable Energy Resource Assessment (RERA) Toolkits for Biomass, Wind & Solar Energy are now complete and details may be found on pages 3 & 4. The WDC completed a Regional Heat Study for the Western Region of Ireland and held two workshops on how the WDC can support and develop biomass use in the Western region. Details can be found on page 5. We also have an update of the EES in partner regions on pages 6 & 7 and details of the Action Renewables ‘Proposal for a Renewable Future’ on page 8. We have details on the development of a database based on the Influence of Environmental Conditions in NPA and Arctic Regions on page 9. And finally, we have details of Technology/Knowledge Transfer Cases on page 10.

Our e-zine can be downloaded from the GREBE Project website here.


New scheme encouraging homeowners to install solar panels launched today


A new scheme encouraging homeowners to install solar panels has been launched this morning. The pilot scheme offers grants for the installation of solar panels and extra funds to install battery storage systems.  Environment Minister Denis Naughten says the scheme will allow people to turn their home into their very own “renewable power station.” He said homeowners can save around €220 in electricity costs every year by taking advantage of the scheme.

Announcing the grants for homeowners, Minister for Communications, Climate Action and Environment, Denis Naughten TD said: “Turning your home into a renewable power station is now one step closer. Microgeneration is an incredibly exciting space that will allow citizens in local communities to generate their own electricity and contribute towards Ireland’s climate action targets. With this grant that I am announcing today, a typical 3-bed semi-detached house would spend about €1,800 on a solar panel system and would save approximately €220 per year on their electricity bills.”

The Minister added: “The pilot scheme will be subject to a 6-month review at which time the costs of installation will be assessed and further opportunities to broaden this scheme to other groups and other technologies will be explored.” The scheme will be funded by the Department of Communications, Climate Action and Environment and administered by the Sustainable Energy Authority of Ireland (SEAI). The grant is available for homes built and occupied before 2011 and details of eligibility criteria and how to apply are set out here. A registered solar PV installer must be used and a full list of registered installers is also available on the SEAI website.

Government approves scheme to diversify green energy


A new scheme designed to diversify the State’s renewable energy production and boost its chances of meeting key EU targets has been approved by the Government. The Renewable Electricity Support Scheme (RESS) is designed to help the State meet its renewable pledges up to 2030. Its first priority is to boost renewable energy production quickly to help turn 16 per cent of the State’s energy needs “green” by 2020. The scheme will incentivise the introduction of sufficient renewable electricity generation by promoting investment by community groups in green projects. Offshore wind and tidal projects will be central if the State is to meet its targets, while it is expected to also support an immediate scale-up of solar projects. Projects looking for support under the scheme will need to meet pre-qualification criteria, including offering the community an opportunity to invest in and take ownership of a portion of renewable projects in their local area.

Auction system

The RESS scheme introduces a new auction system where types of energy will bid for State support. It is proposed that the scheme be funded through the Public Service Obligation Levy, which is a charge on consumers to support the generation of electricity from renewable sources. Individual projects will not be capped, but the Government will limit the amount that a single technology, such as wind or tidal, can win in a single auction. The auctions will be held at frequent intervals throughout the lifetime of the scheme to allow the State to take advantage of falling technology costs. The first auction in 2019 will prioritise “shovel-ready projects”. “By not auctioning all the required capacity at once, we will not be locking in higher costs for consumers for the entirety of the scheme,” Minister for the Environment Denis Naughten said. In effect it should make it easier for solar and offshore wind to get investment, yielding multiple billions for green projects over the next 15 years.

2020 vision

It is hoped renewable energy will represent 40 per cent of the State’s gross electricity consumption by 2020, and 55 per cent by 2030, subject to determining the cost-effective level that will be set out in the draft National Energy and Climate Plan, which must be approved by the EU and in place by the end of 2019. In addition the scheme is intended to deliver broader energy policy objectives, including enhancing security of supply. “This scheme will mark a shift from guaranteed fixed prices for renewable generators to a more market-oriented mechanism [auctions] where the cost of support will be determined by competitive bidding between renewable generators,” said Mr Naughten. The next step for the Government is to secure EU approval for the package, which typically takes six to nine months. It is estimated that the first auction will be in the second half of next year.

Power from Biomass project final seminar, Monday 11th June, Joensuu


The Rural development programme co-financed Power from Biomass project completed its work in June 2018 after three years of renewable energy development in North Karelia, Finland. The project cooperating closely with GREBE in North Karelia, resulted in several new investments including two solar PV and energy storage systems in community buildings of Höljäkkä and Haikola in Nurmes. Project also established a regional network of 15 renewable energy demonstration sites.

The final seminar held in Joensuu, presented projects main outputs, latest developments in renewable electricity production, biomass-based small-scale combined heat and power, solar energy project of heat enterprises, and intelligent solar PV systems.

Project manager Antti Niemi from Pielinen Karelia Development Company PIKES Ltd. summarized the project results. The project established a regional demonstration network with 15 sites demonstrating renewable energy production systems. The Energiaraitti website presents the technical and economic information and live-information of solar PV systems. New production units established were mostly solar PV and some energy storages systems in farms, other rural enterprises and community buildings. The biomass-based renewable energy had a challenging business environment due to low price of fossil fuel oil. Despite, also some new biomass-based energy systems were established.

Project manager Kim Blomqvist from Karelia UAS presented the solar PV systems integrated into biomass-based district heating plants. Investments were made for 7 district heating plants with total annual production of 52 MWh. The heating plans were considered suitable for the solar PV as they have balanced electricity demand.

Marketing and product development manager Kimmo Tolvanen, representing regional energy company PKS, presented an in-depth overview of the energy system development in Finland and North Karelia. The main game changers in the energy system are expected to consist of wind and solar power production, energy storages and digitalization working all effectively together. The energy grid changes toward decentralised, intelligent and adaptive systems are evident. In addition, electricity markets are in transition, and new service developments are expected throughout the system from production to consumption.

Project coordinator Anssi Kokkonen from Karelia UAS presented the technical solutions of biomass-based combined heat and power production. The solutions included woodchip gasification plant (Volter Ltd.), Nano-chp Stirling engine (9 kWth + 0.6 kWe), fuelled by wood pellets (Ökofen).  Both solutions are demonstrated at Sirkkala Energy Park by Karelia UAS.

Project manager Toni Hannula from energy company ESE (Etelä-Savon Energia, Mikkeli) presented intelligent solar power systems. The smart energy transition project by Lappeenranta Technological University has generated an overview of the systems change. The ESE has been successful in establishing biogas fuel stations, and piloting intelligent solar PV systems with 48 hours production forecast and directing the production optimally depending on energy price (electricity spot-price optimizing) and production and consumption loads. The system is piloted in Lumme Energia Oy estates.

The Power from Biomass project developed as a diverse renewable energy project and delivered several new services and RE production sites were established. The project had an international element through cooperation and networks of the GREBE project.