Support Scheme For Renewable Heat – Phase 1 open for Heat Pumps

 

Heat Pump

SEAI have announced that a new heat pump grant is now available to commercial, industrial, agricultural, public and other non-domestic heat users not covered by the EU Emissions Trading System (EU ETS). The Government grant covers 30% of eligible costs.

This is the first of two phases in the support scheme for renewable heat. The second phase will provide support for biomass and anaerobic digestion through tariff payments. State Aid approval has not yet been granted by the EU Commission for the second phase and it is expected that it will be open before the end of the year. Funding will then be available for the following technologies:

  • Biomass heating systems
  • Anaerobic digestion heating systems
  • Biomass boiler or biomass HE CHP heating systems
  • Biogas (anaerobic digestion) boiler or biogas HE CHP heating systems

To find out more and begin your application click here

 

Advertisements

Advice Notes on Ground & Air Source Heat Pumps Technology Economics for the NPA Region

GSHP

The Advice Notes aim to provide introductory material for entrepreneurs, startups and SME’s, considering to enter into the renewable energy sphere and based in the NPA regions partners to GREBE. The scope of the Advice Note covers regional, trade and industry, renewable energy (RE), technology information from Ireland, Northern Ireland, Scotland, Iceland and Finland. Different partner regions have different level of deployment of the various RE technologies covered by the Advice Notes. Thus, the level of information will vary depending on the level of deployment for each technology. For example, wind is not deployed on a large scale in North Karelia (Finland); however, it is widely deployed in Scotland, Ireland and Northern Ireland.

Full details are available on the GREBE website:

http://grebeproject.eu/wp-content/uploads/2017/10/GREBE-Advice-Notes-GSHP-ASHP.pdf

The focus of the Advice Notes is on regional information of some of the main economic characteristics sited as imperative, when making an informed choice, regarding which RE technology may be the optimal choice for a new business venture:

  • Costs and economics associated with the relevant technology
  • Support schemes available, relevant to the technology
  • Government allowance/exemptions, relevant to the technology
  • Funding available for capital costs of the relevant technology
  • List of the relevant to the technology suppliers/developers, with focus on local/regional, suppliers/developers and the products and services they offer.

Geothermal Map

Heat pumps offer a means to access and utilize the thermal energy that is contained naturally in air, water or the ground. Heat pumps extract low-grade energy from the surrounding environment (air, water, and ground) and transform it into usable energy at a higher temperature suitable for space and water heating. Any kind of heat pump will need to be powered by electricity. Thus, the coefficient of performance (COP), which is the amount of electricity input, is a very important factor when considering GSHP or ASHP. For example if it takes 1 unit of electricity input to produce 4 units of heat output, the CoP will be 4. One of the crucial factors for the CoP is the temperature required by the heating system as CoP is higher when the required temperature is lower (35- 45°C).

Therefore, heat pumps are appropriate for buildings that have these lower temperature heating systems. As these can be costly to retrofit, new buildings which are already fitted with low temperature heating are apt for heat pump technology. For a GSHP or ASHP system a minimum of CoP 3 is needed in order to be a viable option offering savings both in costs and C02 emissions.

The Advice Notes will cover Ground Source Heat Pump (GSHP) and Air Source Heat Pump (ASHP).

GSHP systems make use of the temperature difference between above-ground (air) temperatures and below-ground temperatures for heating or cooling. GSHPs take low-level heat from solar energy stored in the earth and convert it to high-grade heat by using an electrically driven or gas-powered heat pump containing a heat exchanger. A fluid, mixture of water and antifreeze, is circulated in a closed loop system, which picks up heat from the ground and then passes through the heat exchanger in the heat pump, which extracts the heat from the fluid. Heat pumps deliver heat most efficiently at about 30°C which is usually used to deliver space heating to buildings. GSHPs cover a wide range of capacities, from a few kW to hundreds of kW.

Air-source heat pumps (ASHPs) work on the same principle as GSHP, by taking low-grade thermal energy from the air (using an air-source collector outside of the building) and converting it to useful heat by means of the vapour compression cycle. ASHPs are in common use in commercial-scale heating, ventilation and AC systems as they can meet both heating and cooling demand. Installation of an ASHP includes fixing an external unit and drilling holes through the building wall with and an extra pipework may be required. The main steps for deciding if an ASHP is an apt choice are the same as those for a GSHP system, without the need for a ground survey.

Advice Notes on Geothermal Economics for the NPA Region

Geothermal

The Advice Notes aim to provide introductory material for entrepreneurs, startups and SME’s, considering to enter into the renewable energy sphere and based in the NPA regions partners to GREBE. The scope of the Advice Note covers regional, trade and industry, renewable energy (RE), technology information from Ireland, Northern Ireland, Scotland, Iceland and Finland. Different partner regions have different level of deployment of the various RE technologies covered by the Advice Notes. Thus, the level of information will vary depending on the level of deployment for each technology. For example, wind is not deployed on a large scale in North Karelia (Finland); however, it is widely deployed in Scotland, Ireland and Northern Ireland.

Full details are available on the GREBE website:

http://grebeproject.eu/wp-content/uploads/2017/10/GREBE-Advice-Notes-Geothermal.pdf

The focus of the Advice Notes is on regional information of some of the main economic characteristics sited as imperative, when making an informed choice, regarding which RE technology may be the optimal choice for a new business venture:

  • Costs and economics associated with the relevant technology
  • Support schemes available, relevant to the technology
  • Government allowance/exemptions, relevant to the technology
  • Funding available for capital costs of the relevant technology
  • List of the relevant to the technology suppliers/developers, with focus on local/regional, suppliers/developers and the products and services they offer.

913946_10151355412055978_1481536158_o

It is understood that the ultimate source of geothermal energy is radioactive decay occurring deep within the earth. In most regions, this heat reaches the surface in a very diffuse state. Nevertheless, due to a range of geological processes, some areas, including substantial portions of the NPA region, are underlain by comparatively shallow geothermal resources.

However, Iceland is taking geothermal power and technology to an advanced level by exploiting the resource for power generation. Other countries in the NPA region are exploring options of exploiting the geothermal resources by the use of deep geothermal technology but are still far behind in comparison to Iceland.

Energy Efficiency and Entrepreneurship

AR Blog

Becoming an entrepreneur can be challenging, therefore it’s important to stay ahead of the curve. Most business owners now recognise the importance of energy efficiency measures and sourcing renewable energy where possible. This is due to the cost savings these options can offer, allowing businesses to reinvest in other activities. Saving 20% on your energy bills can generate returns which are equivalent to a 5% increase in sales1.. Additionally, as consumers are becoming more environmentally aware, there are increasing expectations on suppliers, across all sectors, to demonstrate their commitment to sustainability, particularly in relation to renewable energy.

A survey completed by Orsted, highlighted that 73% 2. of consumers would choose a retailer that used renewable energy over one that didn’t. Improving your reputation and becoming environmentally conscious needn’t be something that will interrupt or hinder your businesses operations – it can significantly increase your competitiveness.

Committing to renewable energy:

  • Businesses who want to commit to renewable energy can do so through Power Purchase Agreements (PPA) either from an electricity supplier or direct engagement with a renewable electricity generator, in more recent times this has been referred to as a Corporate Power Purchase Agreement.
  • Alternatively, a business can invest in renewable technology to generate renewable electricity, which satisfies either part or all the businesses electricity demand. On a global scale, RE100 is a collaborative initiative, which some of the world’s most influential companies have joined and committed to 100% renewable electricity. Companies who have committed to RE100 primarily adopt the methods mentioned above to ensure they achieve their targets.

With a steady uptake of ‘green procurement’, which focuses on sourcing and purchasing products and services that use fewer resources and minimises their impact on the environment, there is certainly reason to get your business ‘going green’. In Northern Ireland, the ‘Sustainable Development strategy’ recognises the importance of responsible procurement in the public sector to ensure the effective and efficient use of resources. This was developed to select suppliers who have a sound environmental standing. Therefore, with environmental awareness and targets only set to increase in the future, it stands to sense for businesses to begin exploring their options in relation to sourcing renewable energy, if they have not already done so. This will enable them to ensure business operation remains competitive.

1 https://www.carbontrust.com/resources/guides/energy-efficiency/better-business-guide-to- energy-saving/

2 https://www.energyvoice.com/otherenergy/176726/orsted-claim-73-of-customers-prefer-renewable-energy-retailer/

3 http://there100.org/re100

Advice Notes on Solar Thermal Technology Economics for the NPA Region

Solar Thermal

The Advice Notes aim to provide introductory material for entrepreneurs, startups and SME’s, considering to enter into the renewable energy sphere and based in the NPA regions partners to GREBE. The scope of the Advice Note covers regional, trade and industry, renewable energy (RE), technology information from Ireland, Northern Ireland, Scotland, Iceland and Finland. Different partner regions have different level of deployment of the various RE technologies covered by the Advice Notes. Thus, the level of information will vary depending on the level of deployment for each technology. For example, wind is not deployed on a large scale in North Karelia (Finland); however, it is widely deployed in Scotland, Ireland and Northern Ireland.

Full details are available on the GREBE website:

http://grebeproject.eu/wp-content/uploads/2017/10/GREBE-Advice-Notes-SOLAR-Thermal.pdf

The focus of the Advice Notes is on regional information of some of the main economic characteristics sited as imperative, when making an informed choice, regarding which RE technology may be the optimal choice for a new business venture:

  • Costs and economics associated with the relevant technology
  • Support schemes available, relevant to the technology
  • Government allowance/exemptions, relevant to the technology
  • Funding available for capital costs of the relevant technology
  • List of the relevant to the technology suppliers/developers, with focus on local/regional, suppliers/developers and the products and services they offer.

ST

Solar thermal systems use solar collectors to absorb energy from the sun and transfer it, using heat exchangers, to heat water. Solar thermal delivers hot water at temperatures of between 55ºC and 65ºC. This is a comparatively mature technology and many installations date back to the 1970s. There are two main types of solar heating collectors:

  • Flat-plate collectors – a sheet of black metal, that absorbs the sun’s energy, encases the collector system. Water is fed through the system in pipes, which conduct the heat to the water.
  • Evacuated tubes – a series of parallel glass heat tubes grouped together. Each tube contains an absorber tube enclosed within a vacuum. Sunlight passing through the outer glass tube heats the absorber tube contained within it, and in doing so, the heat is transferred to a liquid flowing through the tubes.

Evacuated tubes are the most efficient type of solar water collector at around 80% efficiency (compared to around 70% for flat plate collectors). Correspondingly, they also cost more to manufacture; thus, they are more expensive. Modern solar thermal technologies are dependable, efficient and completely safe. Solar thermal technology can have up to 80% efficiency rate in delivering heat to your business.

 

CHP project of Kuittila Power – Case Study

The CHP project of Kuittila Power was initiated by the entrepreneur/farmer interested to decrease the energy costs and produce own energy for the farm and co-located company. One of his staff and a development company introduced the solution. The reference site and a manufacturer were visited, after which a feasibility study was carried out.

As there was positive result, the investment project was initiated and 35% co-financing negotiated from the local authority. The manufacturer provided the technical planning, and investor took care of micro DH network construction and required connections (with the electricity company). A local constructor made the building construction.

The investment initiated in April, was ready in October 2012. The first winter included only test-runs, as there was no available high quality wood fuel. In spring, own fuel supply (with dryer solutions from the reference site) was established and plant started operating.

The first year included technical operations to improve the performance; technical support was received through the manufacturer. The plant is operating now a 3 year at a roll, and received significant status of small-scale CHP demonstration in the region, nationally and internationally.

For more details see:

http://grebeproject.eu/wp-content/uploads/2017/09/Small-Scale-Biomass-CHP-Kuittila-Power-Finland.pdf

 

 

Energy in Agriculture 2018 – Innovation Showcase

Freed

Save the date for Ireland’s largest energy specific event for the agricultural community, Energy in Agriculture 2018!

In 2017 it had over 60 exhibitors and attracted over 2500 attendees, proving to be a highly successful, informative and productive day for all.

The 2018 event will take place again at Gurteen College, Co. Tipperary on Tuesday 21st August 2018. It will be bigger and better this year, informing visitors of the greater energy opportunities in agriculture – Support Scheme for Renewable Heat, Microgeneration Grant Scheme and the further development of the Renewable Electricity Support Scheme.

You can read the full programme here: Energy in Agriculture Programme

An exciting new addition to the line-up for the day is the Innovation Showcase – taking place in the main EXPO Arena at 3:30pm.

The Energy in Agriculture team is currently looking for entries for the Innovation Showcase.  If you have an innovative product that aims to increase efficiency and sustainability on farms, then you should apply to be included in the INNOVATION SHOWCASEInnovation Showcase – Call for entries

Not only will you get the chance to showcase your product/service to a niche target audience, all successful applicants will also be in with the chance of receiving the overall ‘Energy in Agriculture Innovation Award’ for the best innovation that improves efficiencies on Irish farms or contributes to the de-carbonisation of agriculture.  There are also an additional two categories of sponsored awards with significant prizes attached (see below).

Please register HERE to attend the event or apply for the showcase!