Technology/Knowledge Transfer Cases

Chipper

One aim of the GREBE project is to promote knowledge sharing and information exchange between actors in renewable energy supply and demand. Transnational sharing of knowledge is a key element of GREBE and special focus of working package 7 in order to facilitate transnational effective knowledge transfer and collaboration in the RE business sector. Two more case reports are now available on the transfer of technology and knowledge in the NPA:

Ecohog – Technology for the waste and recycling sector

Ecohog Ltd. is a family owned equipment manufacturer located in Co Tyrone, Northern Ireland. Although a small and medium-sized enterprise (SME), Ecohog is operating in a global scale and have over 20 years’ experience supplying equipment to the waste and recycling sector.

Worldwide, there is a greater focus on minimising waste, reducing landfill waste and recycling in general. Therefore the need to integrate efficient waste separation and processing technology is a growing global concern. Also in Finland, the recovery of waste has become increasingly important. The technology transferred to Finland provides an alternative to manual sorting which is both exhausting and expensive. The technology allows customers to incorporate air separation into new or existing processing configurations that experience contaminates in the materials.

This is available on the GREBE Renewable Business Portal: www.renewablebusiness.eu and can be downloaded here: Ecohog – Technology for the waste and recycling sector

Innovative Hybrid Chipper for Forest Chip Production – a theoretical technology transfer case study

This report is about the innovative hybrid chipper for forest chip production and is a pure theoretical technology transfer case based on a simulation study using input data from the literature.

Several parameters to improve knowledge towards the transferring of the technology and applying it in other partner regions were the focus of this study on an innovative hybrid technology chipper. The focus was on the knowledge on fuel supply costs and supply system requirements for this technology in order to supports market access of new technology and to reduce the risks relating to long-term performance and costs for such technology through the used method. The method used was discrete-event simulation with the simulation of one year performance.

This is available on the GREBE Renewable Business Portal: www.renewablebusiness.eu and can be downloaded here: Innovative Hybrid Chipper for Forest Chip Production

All technology and knowledge transfer cases are supporting the activity towards a guideline supporting enterprises in introducing new to market energy solutions.

Supporting the transnational transfer of knowledge and technology, the Renewable Business Portal provides a platform to demonstrate the full potential of the renewable energy (RE) sector and showcase innovations in RE technology.

Advertisements

IceWind – designers and manufacturers of small vertical axis wind turbines

IceWind designs and manufactures small vertical axis wind turbines for telecom towers and residential applications such as homes, cabins and farms.

The IceWind vertical axis wind technology has been designed in response to the growing demand for renewable technologies. It demonstrates that turbines can be an elegant, quiet, durable, cost effective and nearly maintenance free solution for energy production.

The company was founded in 2012 but development goes back to 2008, when Anemometer was designed as a final project in University of Iceland, where it all started.

For more details see:

http://grebeproject.eu/wp-content/uploads/2017/09/Small-scale-Wind-Energy-IceWind-Iceland.pdf

 

EcoSmart External Insulation Ltd – Case Study

EcoSmart External Insulation Ltd. is an energy efficiency company based in Castlerea, Co. Roscommon in the West of Ireland. EcoSmart External Insulation Ltd. provides external insulation services nationwide to all parts of Ireland. The owners of EcoSmart External Insulation Ltd. are both from an engineering and architectural background and initially formed a partnership in 2009, after working together since 2007 on construction projects using Insulated Concrete Formwork (ICF).

As a result of the economic downturn and subsequent changes in the construction industry in Ireland, the partners decided to continue working together and focus on renewable energy technologies and energy efficiency in construction. In 2011, they formed a partnership with a UK construction company and formed a new company Cara EcoSmart Ltd. where they were worked on projects in the UK funded by the Green Deal Scheme. Cara EcoSmart Ltd. required a robust quality assurance system, and adopted and modified one which was used by other partners in the company. This knowledge transfer proved very valuable when tendering for contracts in Ireland.

In 2013, they formed EcoSmart External Insulation Ltd., and the construction sector slowly started recovering in early 2014 with people investing more on home improvements. The SEAI reintroduced and increased grant funding to approximately €4,500. This depended on the scale of energy efficiency measures undertaken. The availability of this grant made a very big difference in the mentality of people and they were prepared to undertake energy efficiency upgrades.

http://grebeproject.eu/wp-content/uploads/2017/09/Energy-Efficiency-EcoSmart-External-Insulation-Ireland.pdf

 

Advice Notes on Wind Technology Economics for the NPA Region

Wind

The Advice Notes aim to provide introductory material for entrepreneurs, startups and SME’s, considering to enter into the renewable energy sphere and based in the NPA regions partners to GREBE. The scope of the Advice Note covers regional, trade and industry, renewable energy (RE), technology information from Ireland, Northern Ireland, Scotland, Iceland and Finland. Different partner regions have different level of deployment of the various RE technologies covered by the Advice Notes. Thus, the level of information will vary depending on the level of deployment for each technology. For example, wind is not deployed on a large scale in North Karelia (Finland); however, it is widely deployed in Scotland, Ireland and Northern Ireland.

Full details are available on the GREBE website:

http://grebeproject.eu/wp-content/uploads/2017/10/GREBE-Advice-Notes-WIND.pdf

The focus of the Advice Notes is on regional information of some of the main economic characteristics sited as imperative, when making an informed choice, regarding which RE technology may be the optimal choice for a new business venture:

  • Costs and economics associated with the relevant technology
  • Support schemes available, relevant to the technology
  • Government allowance/exemptions, relevant to the technology
  • Funding available for capital costs of the relevant technology
  • List of the relevant to the technology suppliers/developers, with focus on local/regional, suppliers/developers and the products and services they offer.

The first wind turbines for electricity generation were developed at the beginning of the 20th century. Thus, wind technology is one of the most mature and proven technologies on the market. In 2015, the wind energy industry installed 12.8 GW in the EU – more than gas and coal combined. Onshore wind is presently one of the most economically viable RE generation technologies. In areas with good wind resources, generating electricity with wind turbines is already competitive.  Thus, wind turbines offer the prospects of cost efficient generation of electricity and fast return on investment. The economic feasibility of wind turbines depends primarily on the wind speed. Usually, the greater the long term annual average wind speed, the more electricity will be generated and the faster the investment will pay back. The map below gives an overall picture of the wind potential across the globe, showing that the NPA region has a great potential to harness the benefits associated with wind energy generation.

Map

 

 

The Each Leim Microgrid for Energy Storage – Case Study

This project was a demonstration project under the GREAT Project (Growing Renewable Energy Applications and Technologies) which is an EU funded project under the INTERREG IVB NWE Programme. GREAT aimed to encourage communities and small to medium size enterprises (SMEs) to develop technological solutions for Smart Grid, Renewable Energy and Distributive Generation; to research and develop policy issues for regulatory authorities and to provide structured co-operation opportunities between SMEs and research institutes / technology developers.

Údarás Na Gaeltachta was lead partner on the GREAT Project, with two full-time staff allocated to the co-ordination and implementation of their project aims. Each Leim Enterprise Centre was selected as a demonstration site. The Sustainable Energy Authority of Ireland (SEAI) also provided funding for this demonstration project under the Better Energy Communities (BEC) programme, and Údarás Na Gaeltachta utilized the expertise available in the SEAI in the development of the smart grid.

http://grebeproject.eu/wp-content/uploads/2017/09/Battery-Storage-Each-Leim-Microgrid-Ireland.pdf

 

Claremorris and Western District Energy Co-operative develops mobile demonstration unit for biogas

Claremorris and Western District Energy Co-operative is a community enterprise focused on the development and commercialization of renewable energy technologies. The group’s focus is to develop financially viable renewable energy projects through education programmes with key competencies in district heating, solar, biogas, and Micro grid applications. The Co-Op also aims to educate the community on the benefits of community ownership, and renewable energy, on what it is and its impacts.

The AD Demonstration unit (trailer) for biogas with support from Gas Networks Ireland to overcome the lack of understanding of anaerobic digestion and the elements which contribute to development of biogas solutions.

The Co-Op developed a mobile demonstration unit for biogas with support from the Renewable Gas Forum Group / Gas Networks Ireland to educate the public on the benefits of biogas. One of the barriers to entry for this technology is that landowners and local residents’ interests often oppose AD projects believing it may impact on land values, businesses or cause smells and so want to restrict the development of anaerobic digestion plants. The development of this demonstration unit allows communities to ask good questions about technologies and to gain an understanding of how AD operates.

As a result of the demonstration stand at the National Ploughing Championships in 2015, the Co-Op has been invited to demonstrate the unit to 27 different groups. The co-op has developed the original anaerobic digestion demonstration unit to include CO2 extraction, iodine, biogas compression and storage, and consider how CO2 emissions might be addressed. It highlights a means of addressing CO2 emissions from agriculture.

http://grebeproject.eu/wp-content/uploads/2017/09/Anaerobic-Digestion-Claremorris-Energy-Cooperative-Ireland.pdf

 

 

 

Albatern WaveNet Device – Isle of Muck Deployment

Albatern was founded in 2007 by David Finlay, supported by his father and brother. From 2007 until 2010 the development of the technology was very much on a self-funded basis, to come up with the concept and develop early models. It was validated in test environments, going from the bath to open waters.

Isle of Muck is the smallest of four main islands in the Small Isles, part of the Inner Hebrides of Scotland. It is situated on the west coast of Scotland.

The project was a collaboration between Albatern and Marine Harvest Scotland. Albatern owns the technology, while the site is provided by Marine Harvest Scotland. The project in itself is a demonstrator project aiming to corroborate the supply of supplementary power to working fish farms by testing the 6-Series WaveNET arrays.

Motivation behind the project lays in the fact that aquaculture is one of Albatern’s targeted markets. They believe that their device – WaveNET, is perfectly apt to deliver power to isolated off-shore fish farm sites, which currently rely on diesel generators.

http://grebeproject.eu/wp-content/uploads/2017/09/Wave-Energy-Albatern-WaveNet-Scotland.pdf