Resource Assessment Toolkit for Biomass Energy

Biomass

The Toolkit outlines best practice techniques for assessing biomass resource potentials as a foundation for a biomass resource assessment. Biomass resource assessment is indispensable in estimating the bioenergy potential in a given location, the social and environmental impacts accompanying the resources production and the economic viability of biomass utilization scenarios.

The scope of the Toolkit covers:

  • Resource potential – theoretical, technical, economic or implementation potential
  • Approaches for estimation of resource potential – (resource focused, demand driven or integrated approach)
  • General principles, techniques and methods when undertaking a biomass resource assessment
  • Forest biomass and methods for resource assessment
  • Energy crops and methods for resource assessment
  • Agricultural residues and methods for resource assessment
  • Organic waste and methods for resource assessment
  • Global and country specific tools to make preliminary resource assessment and how to use them

Lumber stacks

The classification in types of biomass potentials is the first and most important step when undertaking a biomass resource assessment as it provides insight into explicit conditions, assumptions and limitation made in the assessment. The potential of the resource will define the feasibility of the project, return on investments, environmental considerations, coupled with social and political frameworks.

Details of the Resource Assessment Toolkit for Biomass Energy may be downloaded here:

http://grebeproject.eu/wp-content/uploads/2018/07/GREBE-Resource-Assessment-Toolkit-for-Biomass-Energy-July-2018-1.pdf

Advertisements

Renewables project aims to continue EES in North Karelia

BlogThe Finnish Forest Centre and Karelia UAS have applied for a project, Renewables – Sustainable Energy Economy in North Karelia – from the Rural Development Programme. The project continues on from the successful work of regional Power from Biomass project, completed in June 2018, and the GREBE project ending this month.

The Renewables project will support the establishment of micro clusters in renewable energy, especially based on biomass (wood and biogas). The project will continue the GREBE service, Entrepreneur Enabler Scheme, by organising tailored mentoring for 8 rural businesses in 2019-2021.

The Renewables will work for the regional renewable energy by supporting the development of biogas production, establishing and supporting the cooperation between energy entrepreneurs especially in firewood supply, introducing new innovations to reduce fine particle emissions, and supporting rural enterprises in sustainable product and service development.  The Renewables will have much benefit from GREBE project results, providing vast knowledge base on renewable energy technologies and supports.

The Renewables supports micro clusters of RE enterprises. Their cooperation aims can be e.g. in establishing joint raw material procurements, joint investment projects, or development of new products/services. In GREBE the EES Service and mentoring process provided successful results in a number of cases. The piloted process has proven to be effective and can be replicated with new participants. The funding applied, can be based on Innovation vouchers (2019) and ERDF funding targeted for enterprises.

The Renewables is scheduled to start in January 2019, and is coordinated by the Finnish Forest Centre. The project will organise active collaboration with international renewable energy research and development, such as starting NPA project Handiheat.

Technology/Knowledge Transfer Cases

Chipper

One aim of the GREBE project is to promote knowledge sharing and information exchange between actors in renewable energy supply and demand. Transnational sharing of knowledge is a key element of GREBE and special focus of working package 7 in order to facilitate transnational effective knowledge transfer and collaboration in the RE business sector. Two more case reports are now available on the transfer of technology and knowledge in the NPA:

Ecohog – Technology for the waste and recycling sector

Ecohog Ltd. is a family owned equipment manufacturer located in Co Tyrone, Northern Ireland. Although a small and medium-sized enterprise (SME), Ecohog is operating in a global scale and have over 20 years’ experience supplying equipment to the waste and recycling sector.

Worldwide, there is a greater focus on minimising waste, reducing landfill waste and recycling in general. Therefore the need to integrate efficient waste separation and processing technology is a growing global concern. Also in Finland, the recovery of waste has become increasingly important. The technology transferred to Finland provides an alternative to manual sorting which is both exhausting and expensive. The technology allows customers to incorporate air separation into new or existing processing configurations that experience contaminates in the materials.

This is available on the GREBE Renewable Business Portal: www.renewablebusiness.eu and can be downloaded here: Ecohog – Technology for the waste and recycling sector

Innovative Hybrid Chipper for Forest Chip Production – a theoretical technology transfer case study

This report is about the innovative hybrid chipper for forest chip production and is a pure theoretical technology transfer case based on a simulation study using input data from the literature.

Several parameters to improve knowledge towards the transferring of the technology and applying it in other partner regions were the focus of this study on an innovative hybrid technology chipper. The focus was on the knowledge on fuel supply costs and supply system requirements for this technology in order to supports market access of new technology and to reduce the risks relating to long-term performance and costs for such technology through the used method. The method used was discrete-event simulation with the simulation of one year performance.

This is available on the GREBE Renewable Business Portal: www.renewablebusiness.eu and can be downloaded here: Innovative Hybrid Chipper for Forest Chip Production

All technology and knowledge transfer cases are supporting the activity towards a guideline supporting enterprises in introducing new to market energy solutions.

Supporting the transnational transfer of knowledge and technology, the Renewable Business Portal provides a platform to demonstrate the full potential of the renewable energy (RE) sector and showcase innovations in RE technology.

Advice Notes on Biomass CHP Economics for the NPA Region

Biomass CHP

The Advice Notes aim to provide introductory material for entrepreneurs, startups and SME’s, considering to enter into the renewable energy sphere and based in the NPA regions partners to GREBE. The scope of the Advice Note covers regional, trade and industry, renewable energy (RE), technology information from Ireland, Northern Ireland, Scotland, Iceland and Finland. Different partner regions have different level of deployment of the various RE technologies covered by the Advice Notes. Thus, the level of information will vary depending on the level of deployment for each technology. For example, wind is not deployed on a large scale in North Karelia (Finland); however, it is widely deployed in Scotland, Ireland and Northern Ireland.

Full details are available on the GREBE website:

http://grebeproject.eu/wp-content/uploads/2018/04/GREBE-Advice-Notes-biomass-chp-2.pdf

The focus of the Advice Notes is on regional information of some of the main economic characteristics sited as imperative, when making an informed choice, regarding which RE technology may be the optimal choice for a new business venture:

  • Costs and economics associated with the relevant technology
  • Support schemes available, relevant to the technology
  • Government allowance/exemptions, relevant to the technology
  • Funding available for capital costs of the relevant technology
  • List of the relevant to the technology suppliers/developers, with focus on local/regional, suppliers/developers and the products and services they offer.

 

Combined heat and power (CHP) is a method that delivers both heat and power on site in a single, highly efficient process, normally over 80% efficiency. CHP creates electricity and as a by-product of the generation process it produces heat. Wood biomass is fed into the CHP system similar to a normal biomass boiler and the produced gas is then fed to an engine which is connected to a generator generating electricity while the heat produced, can be fed into a heating system. Below is a map showing the productive forest potential in relation to the total area of the country. Biomass is the world’s fourth largest energy source, contributing to nearly 14% of the world’s primary energy demand.

Small scale (<100kW) and micro-scale (<15kW) biomass CHP are particularly suitable for applications in commercial buildings, such as hospitals, schools, industrial premises, office building blocks, and domestic buildings. Optimum system design and implementation is crucial for cost-effective operation and it is established that the best economic performance come about with high load factors when the maximum amount of both electricity and heat sold on-site is maximised.Untitled

A reliable feedstock supply chain is vital for the economic viability of a CHP system. Fuel costs are central since when considering the levelled cost of electricity and heat production, ongoing running costs far outweigh capital investment. CHP systems and specifically the ones smaller in scale necessitate fuel of the highest quality and have very low moisture content, wood chip/pellets between 15% and 30% moisture content. Thus, it is imperative before considering investment in a biomass CHP system to ensure that the right fuel can be sourced locally.

Advice Notes on Wind Technology Economics for the NPA Region

Biomass

The Advice Notes aim to provide introductory material for entrepreneurs, startups and SME’s, considering to enter into the renewable energy sphere and based in the NPA regions partners to GREBE. The scope of the Advice Note covers regional, trade and industry, renewable energy (RE), technology information from Ireland, Northern Ireland, Scotland, Iceland and Finland. Different partner regions have different level of deployment of the various RE technologies covered by the Advice Notes. Thus, the level of information will vary depending on the level of deployment for each technology. For example, wind is not deployed on a large scale in North Karelia (Finland); however, it is widely deployed in Scotland, Ireland and Northern Ireland.

Full details are available on the GREBE website:

http://grebeproject.eu/wp-content/uploads/2018/07/GREBE-Advice-Notes-Biomass.pdf

The focus of the Advice Notes is on regional information of some of the main economic characteristics sited as imperative, when making an informed choice, regarding which RE technology may be the optimal choice for a new business venture:

  • Costs and economics associated with the relevant technology
  • Support schemes available, relevant to the technology
  • Government allowance/exemptions, relevant to the technology
  • Funding available for capital costs of the relevant technology
  • List of the relevant to the technology suppliers/developers, with focus on local/regional, suppliers/developers and the products and services they offer.

The economics of a biomass system are governed by the capital cost, the biomass fuel cost, the offset fuel costs and the incentives available. The capital cost of a biomass boiler is dependent upon the size, fuel type used and level of automation of the system.

Biomass is the world’s fourth largest energy source, contributing to nearly 14% of the world’s primary energy demand. The most common fuel is wood, which can be supplied in three forms; logs, chips and compressed wood pellets. However, biomass energy also includes energy crops, food waste streams, agricultural residues, industrial wastes and residues which can be used for heating in certain, specific circumstances. A range of biomass boilers are available, in sizes to suit homes, small businesses, community buildings through to large hospitals and industrial processes. A reliable feedstock supply chain is vital for the economic viability of a biomass boiler system.

Fuel costs are central when considering the levelled cost of electricity, since ongoing running costs far outweigh capital investment. Thus, it is imperative before considering investment in a biomass boiler system to ensure that the right fuel can be sourced locally. Economic benefits of biomass include relatively inexpensive resources; locally distributed energy sources provide constancy and reliability, price stability and generation of employment opportunities in rural communities. Risks included price volatility and availability of feedstock.

Farmers warned felling licences taking a year to process – IFA

2014-10-21_bus_3962775_I1 (1)

Forestry felling licenses are taking up to a year to process farmers are being warned by the IFA. National Farm Forestry Chairman, Pat Collins said that the latest IFA Timber Price report shows that palletwood prices have increased by up to 15pc since February, while average sawlog prices are in excess of €85/tonne. Pat Collins said, “With demand for timber predicted to remain high at a domestic and global level, it is a good time to consider forestry. There are several options available under the Afforestation and Woodland Creation scheme to suit the soil, size, location and management objectives”.

He said that the size of a viable forest from a timber perspective is very location specific, for example a small forest that is near a road and easy to work can generate comparable timber incomes per hectare as a larger forests, particularly if managed as part of a harvesting cluster. “For those who have already planted, but who have not managed the forest or have timber in hard-to-access locations – now is the time to have your asset valued and look at realising a good price”. A farmer is legally required to apply to the Forest Service for a felling license before they can fell a tree in his plantation. If you are planning to apply for a felling licence, approvals can take up to 12 months to issue.

“Farmers are very concerned with the delays in getting felling licence approval”, said Mr. Collins. “The introduction of a single 10 year felling licence and the new public consultation process, although welcomed, is causing further delays”. He said that the Department must work to reduce the turnaround time for felling licence approvals so farmers can avail of the strong timber prices.

https://www.independent.ie/business/farming/forestry-enviro/forestry/farmers-warned-felling-licences-taking-a-year-to-process-ifa-36945543.html

Advice Notes on Biomass CHP Technology Economics for the NPA Region

Biomass CHP

The Advice Notes aim to provide introductory material for entrepreneurs, startups and SME’s, considering to enter into the renewable energy sphere and based in the NPA regions partners to GREBE. The scope of the Advice Note covers regional, trade and industry, renewable energy (RE), technology information from Ireland, Northern Ireland, Scotland, Iceland and Finland. Different partner regions have different level of deployment of the various RE technologies covered by the Advice Notes. Thus, the level of information will vary depending on the level of deployment for each technology. For example, wind is not deployed on a large scale in North Karelia (Finland); however, it is widely deployed in Scotland, Ireland and Northern Ireland.

Full details are available on the GREBE website:

http://grebeproject.eu/wp-content/uploads/2018/04/GREBE-Advice-Notes-biomass-chp-2.pdf

The focus of the Advice Notes is on regional information of some of the main economic characteristics sited as imperative, when making an informed choice, regarding which RE technology may be the optimal choice for a new business venture:

  • Costs and economics associated with the relevant technology
  • Support schemes available, relevant to the technology
  • Government allowance/exemptions, relevant to the technology
  • Funding available for capital costs of the relevant technology
  • List of the relevant to the technology suppliers/developers, with focus on local/regional, suppliers/developers and the products and services they offer.

Combined heat and power (CHP) is a method that delivers both heat and power on site in a single, highly efficient process, normally over 80% efficiency. CHP creates electricity and as a by-product of the generation process it produces heat. Wood biomass is fed into the CHP system similar to a normal biomass boiler and the produced gas is then fed to an engine which is connected to a generator generating electricity while the heat produced, can be fed into a heating system. Biomass is the world’s fourth largest energy source, contributing to nearly 14% of the world’s primary energy demand.

Small scale (<100kW) and micro-scale (<15kW) biomass CHP are particularly suitable for applications in commercial buildings, such as hospitals, schools, industrial premises, office building blocks, and domestic buildings. Optimum system design and implementation is crucial for cost-effective operation and it is established that the best economic performance come about with high load factors when the maximum amount of both electricity and heat sold on-site is maximised.