Advice Notes on Energy Storage Economics for the NPA Region

Energy Storage

The Advice Notes aim to provide introductory material for entrepreneurs, startups and SME’s, considering to enter into the renewable energy sphere and based in the NPA regions partners to GREBE. The scope of the Advice Note covers regional, trade and industry, renewable energy (RE), technology information from Ireland, Northern Ireland, Scotland, Iceland and Finland. Different partner regions have different level of deployment of the various RE technologies covered by the Advice Notes. Thus, the level of information will vary depending on the level of deployment for each technology. For example, wind is not deployed on a large scale in North Karelia (Finland); however, it is widely deployed in Scotland, Ireland and Northern Ireland.

Full details are available on the GREBE website:

http://grebeproject.eu/wp-content/uploads/2018/04/Advice-Notes-Energy-storage-2-3.pdf

The focus of the Advice Notes is on regional information of some of the main economic characteristics sited as imperative, when making an informed choice, regarding which RE technology may be the optimal choice for a new business venture:

  • Costs and economics associated with the relevant technology
  • Support schemes available, relevant to the technology
  • Government allowance/exemptions, relevant to the technology
  • Funding available for capital costs of the relevant technology
  • List of the relevant to the technology suppliers/developers, with focus on local/regional, suppliers/developers and the products and services they offer.

Some of the renewable energy resources are classified as intermittent in nature, meaning that the corresponding technologies produce electricity/heat depending on the availability of the resource. Two of the main drawbacks are the short-term variability and low predictability inherent to renewable sources. Thus, when the wind is not blowing and the sun is not shining, the clean technologies cannot match the demand. However, when the resources are available, it is often the case that they produce more energy than required. By storing the energy produced and supplying it on demand, these technologies can continue to power the businesses even when the sun has set and the air is still, creating a continuous, reliable stream of power throughout the day. Furthermore, energy storage systems can shift consumption of electricity from expensive periods of high demand to periods of lower cost electricity during low demand.

battery storage

This can be over different timescales, from intra-day (when energy is shifted from low value to high value periods within the same 24-hour period) to inter-seasonal, where energy is stored in summer when demand is lower and used in winter when demand is greater. Contingent on elements such as a facility’s location, utility rates, and electrical load, energy storage can be an apt solution for facilities to cut energy bills. The use of energy storage can also allow greater returns on investment to be made from deployed renewable energy technologies. Storage technologies could decrease the need to invest in new conventional generation capacity, resulting in financial savings and reduced emissions especially from electricity generation. Utilisation of storage also means fewer and cheaper electricity transmission and distribution system upgrades are required.

Advertisements

Government approves scheme to diversify green energy

DNaughten

A new scheme designed to diversify the State’s renewable energy production and boost its chances of meeting key EU targets has been approved by the Government. The Renewable Electricity Support Scheme (RESS) is designed to help the State meet its renewable pledges up to 2030. Its first priority is to boost renewable energy production quickly to help turn 16 per cent of the State’s energy needs “green” by 2020. The scheme will incentivise the introduction of sufficient renewable electricity generation by promoting investment by community groups in green projects. Offshore wind and tidal projects will be central if the State is to meet its targets, while it is expected to also support an immediate scale-up of solar projects. Projects looking for support under the scheme will need to meet pre-qualification criteria, including offering the community an opportunity to invest in and take ownership of a portion of renewable projects in their local area.

Auction system

The RESS scheme introduces a new auction system where types of energy will bid for State support. It is proposed that the scheme be funded through the Public Service Obligation Levy, which is a charge on consumers to support the generation of electricity from renewable sources. Individual projects will not be capped, but the Government will limit the amount that a single technology, such as wind or tidal, can win in a single auction. The auctions will be held at frequent intervals throughout the lifetime of the scheme to allow the State to take advantage of falling technology costs. The first auction in 2019 will prioritise “shovel-ready projects”. “By not auctioning all the required capacity at once, we will not be locking in higher costs for consumers for the entirety of the scheme,” Minister for the Environment Denis Naughten said. In effect it should make it easier for solar and offshore wind to get investment, yielding multiple billions for green projects over the next 15 years.

2020 vision

It is hoped renewable energy will represent 40 per cent of the State’s gross electricity consumption by 2020, and 55 per cent by 2030, subject to determining the cost-effective level that will be set out in the draft National Energy and Climate Plan, which must be approved by the EU and in place by the end of 2019. In addition the scheme is intended to deliver broader energy policy objectives, including enhancing security of supply. “This scheme will mark a shift from guaranteed fixed prices for renewable generators to a more market-oriented mechanism [auctions] where the cost of support will be determined by competitive bidding between renewable generators,” said Mr Naughten. The next step for the Government is to secure EU approval for the package, which typically takes six to nine months. It is estimated that the first auction will be in the second half of next year.

https://www.irishtimes.com/news/environment/government-approves-scheme-to-diversify-green-energy-1.3575492

Advice Notes on Wind Technology Economics for the NPA Region

Wind

The Advice Notes aim to provide introductory material for entrepreneurs, startups and SME’s, considering to enter into the renewable energy sphere and based in the NPA regions partners to GREBE. The scope of the Advice Note covers regional, trade and industry, renewable energy (RE), technology information from Ireland, Northern Ireland, Scotland, Iceland and Finland. Different partner regions have different level of deployment of the various RE technologies covered by the Advice Notes. Thus, the level of information will vary depending on the level of deployment for each technology. For example, wind is not deployed on a large scale in North Karelia (Finland); however, it is widely deployed in Scotland, Ireland and Northern Ireland.

Full details are available on the GREBE website:

http://grebeproject.eu/wp-content/uploads/2017/10/GREBE-Advice-Notes-WIND.pdf

The focus of the Advice Notes is on regional information of some of the main economic characteristics sited as imperative, when making an informed choice, regarding which RE technology may be the optimal choice for a new business venture:

  • Costs and economics associated with the relevant technology
  • Support schemes available, relevant to the technology
  • Government allowance/exemptions, relevant to the technology
  • Funding available for capital costs of the relevant technology
  • List of the relevant to the technology suppliers/developers, with focus on local/regional, suppliers/developers and the products and services they offer.

The first wind turbines for electricity generation were developed at the beginning of the 20th century. Thus, wind technology is one of the most mature and proven technologies on the market. In 2015, the wind energy industry installed 12.8 GW in the EU – more than gas and coal combined. Onshore wind is presently one of the most economically viable RE generation technologies. In areas with good wind resources, generating electricity with wind turbines is already competitive.  Thus, wind turbines offer the prospects of cost efficient generation of electricity and fast return on investment. The economic feasibility of wind turbines depends primarily on the wind speed. Usually, the greater the long term annual average wind speed, the more electricity will be generated and the faster the investment will pay back. The map below gives an overall picture of the wind potential across the globe, showing that the NPA region has a great potential to harness the benefits associated with wind energy generation.

Map

 

 

Increased generation from Scottish renewables

Windfarm near Ardrossan, Scotland

In June the UK Government released figures showing that renewable energy generation has seen a dramatic 11% increase in the first half of 2018 compared to the same period in 2017. Improved weather conditions for generation have seen wind generation in Scotland increase by 37%.

Paul Wheelhouse, Scottish energy minister, said: “These figures show that Scotland’s renewable energy sector is stronger than ever with almost exactly 1GW of new capacity installed since Q1 2017 and a strong pipeline of further projects still to be constructed.” Last year proved to be another record breaking year with provisional annual statistics showing that renewable electricity generation was up 27% on 2016 and 19% on 2015. The increase in generation now brings 69% of Scotland’s electricity consumption being delivered by renewable energy.

Scotland has long delivered on world leading electricity targets and is helped by an abundant onshore wind resource and historic hydro system. As the Scottish Government builds out new offshore wind and tidal projects the increase in generation only looks to continue. Recent plans for a new pumped storage hydro scheme on Scotland’s famous Loch Ness show a long term vision for the country’s electricity grid as it looks to increase penetration of renewables into its grid system. Climate change targets have been helped by the closure of Scotland’s last remaining coal powered fire station in recent years but ageing nuclear power stations and a “no new nuclear” policy look to add new challenges in the future.

Bioenergy is thriving in Akureyri

Electric Car

Renewable energy, including bioenergy, is thriving in the town Akureyri, in northern Iceland, with the community actively moving in the direction of carbon neutrality. The energy transition team at Orkustofnun visited Akureyri in order to look into the current status of renewable energy in transport and in utilization of biomass in the Eyjafjörður Area, northern Iceland. Orkustofnun’s branch in Akureyri was visited, and Guðmundur H. Sigurðarson, Managing Director of Vistorka, presented the company’s activities and the status of these issues including achieving carbon neutral society in Akureyri.

Several charging stations for electric cars are available for use in Akureyri and some of them where visited. The stations are owned and operated by ONNorðurorka and Rarik. Vistorka received funding from the Energy Fund for development of infrastructure for electric cars which will result in 11 electric charging stations in the North of Iceland. Most of the projects described below have been funded by the Energy Fund as well as supported by Orkusetur.

The compost company Molta was visited, where organic waste is collected from homes and companies in the Eyjafjörður Area and beyond for compost production. Production of biodiesel from animal waste is planned at the facility. The company Orkey was also visited, where biodiesel is produced from waste cooking oil. The biodiesel is used in buses in Akureyri, on fishing vessels and in asphalt production. The aim is to increase production by adding animal waste as mentioned previously. Methane is currently produced from the old landfill in Akureyri and “harnessing” of the manure in the Eyjafjörður area is on the drawing board to further increase methane production to fuel 2-3000 cars per year.

The use of electric bikes by the employees of Norðurorka is also of interest, as electric bikes are relatively inexpensive, convenient in a hilly and windy environment and use a renewable power source. In winter the bikes’ studded tyres are well suited for icy conditions as well as the on-board lighting system is important for safety in the darkness of the Arctic winter. The energy transition team at Orkustofnun has many irons in the fire these days and are gathering ideas that help accomplish Althingi’s action plan regarding energy transition. In order to meet such goals, it is clear that applying well-known and successful methods and technologies are important. Orkustofnun, Orkusjóður and Orkusetur will continue to support projects in the field of energy transition throughout the country.

 

Ireland’s electricity should be 70 per cent renewables by 2030, says wind farm group

Turbines

The Government should set an ambitious target for Ireland of producing 70 per cent renewable electricity by 2030, which would help transform the energy sector and benefit consumers, according to the Irish Wind Energy Association (IWEA). The call by the IWEA, which represents the wind industry – including the majority of windfarm operators in Ireland – is based on the findings of a study it commissioned which shows such a target was technically possible and, if achieved, would be cost neutral for consumers.

The Department of Communications, Climate Action and Environment should set this 70 per cent challenge for the renewable energy industry, said newly-appointed IWEA chief executive Dr David Connolly. Ireland had the required expertise built up over the past two decades “across academia, system operators, regulators, and the entire renewable industry to meet the target”, he told the IWEA spring conference in Dublin. Following a study by Baringa, UK consultants in energy and utilities, IWEA has published its “Energy Vision” for 2030. It highlights the risk of “a return to reliance on fossil fuels towards 2030 after the 40 per cent renewables target [for electricity] set for 2020 is met”.

World leader

The study concludes Ireland can continue to be a world leader in renewable electricity, particularly wind, but:

  • Wind power, “the least costly technology”, will need to more than double between 2020 and 2030.
  • 2,500 megawatts (MW) of solar power capacity will be needed by 2030.
  • Construction of storage capacity in the form of 1,700 MW of new batteries by 2030 will be required.
  • Power plants need to become more flexible to adjust to fluctuations in wind and solar power, though an additional 1,450 MW will be delivered from interconnectors with Britain and France.

The group’s modelling confirms the possibility of not only providing clean power for the electricity sector, but renewable energy for heat and transport. It says “426,000 electric cars could be used instead of petrol/diesel, while 279,000 heat pumps could replace existing oil boilers in Irish homes by 2030”. Dr Connolly said a bright green future for Ireland was possible “if we have the ambition and the backing to grasp it . . . not only could our 2030 landscape be driven by clean, home grown renewables, but it will not cost more than using fossil fuels”. Up until now the EU target of 40 per cent renewable electricity by 2020 was the key driver for the Irish wind energy sector. The EU is currently evaluating what this target should be for 2030, which is expected to be finalised next year though the Government has yet to commit to a new target.

Source: https://www.irishtimes.com/business/energy-and-resources/ireland-s-electricity-should-be-70-per-cent-renewables-by-2030-says-wind-farm-group-1.3435536

Taxi drivers to get €7,000 grant for switching to electric cars

Taxi

Taxi drivers and operators of other public service vehicles are set to benefit from a new €7,000 grant scheme aimed at encouraging them to opt for electric vehicles. Minister for Transport, Shane Ross, has announced a new incentive scheme offering a €7,000 grant towards the purchase of an electric vehicle for those with a small public service vehicle (SPSV) licence. That grant is on top of the existing electric car incentives – the €5,000 rebate on vehicle registration tax, a €3,800 grant from the Sustainable Energy Authority of Ireland (SEAI), and the upcoming new grant from the SEAI for installing a home-charging point.

The Department of Transport grant applies to any fully electric vehicle up to six years old, although the amount reduces according to the age of the car. A smaller €3,500 grant applies if you want to buy a plug-in hybrid electric vehicle (PHEV) for taxi use, but only those with Co2 emissions lower than 65g/km. Conventional hybrids are excluded.

The move is the latest in a series of measures being introduced by the Government to promote electric car ownership. Minister for Finance Paschal Donohoe introduced a one-year exemption on benefit in kind for electric vehicles in the budget, and it is expected that the exemption will be rolled out for at least three years, including a suspension of any benefit in kind levied on charging your electric car at work.

Meanwhile, Minister for the Environment Denis Naughten has stated that he is looking at other ways to encourage an increase in the move to electric vehicles, including making motorways tolls free for electric cars and banning sales of any non-hybrid or electric car from 2030 onwards. However, the current financial incentives are still not having much effect. Electric cars accounted for a paltry 0.25 per cent of the market last year, with just 622 sold in total in a total new car market of 131,335.

Source: http://www.irishtimes.com